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Large-amplitude nonlinear oscillations of an axially symmetric water drop of volume
7.33 cm3, initial aspect ratio 3.4, with surfactant Triton X-100 of 1.4 × 10−4 g ml−1

(1 CMC), in microgravity are compared with predictions of the boundary-integral
method. The small shear viscosity of the bulk phase, as well as the surface dilatational
viscosity and surface shear viscosity are considered. When a very specific set of
material properties is assumed, numerical simulations of the drop oscillations are in
good agreement with the experimental results of drop oscillations measured in space
during the second United States Microgravity Laboratory, USML-2. The obtained
surface viscosities are in rough agreement with literature values.

1. Introduction
Space shuttle observations (Apfel et al. 1997; Holt et al. 1997) of large-amplitude

oscillations of an axially symmetric water drop with the surfactant Triton X-100 have
illustrated dramatic nonlinear excursions. We have numerically simulated such drop
oscillations so that the surface properties associated with the presence of surfactant
can be extracted.

It is well known that when a drop is positioned in air in microgravity, the surface
tension will make the drop attain a minimum surface area so as to reach a state of
minimum surface energy. When a surfactant is introduced in the drop and accumulates
at the surface, the magnitude of the surface tension stress generally diminishes
significantly. In general, surfactants affect drop oscillations in two distinct ways.
The first is called the Marangoni effect: because of the local rates of area change
(surface dilatation) caused by surface deformations, the inhomogeneous redistribution
of surfactant leads to tension gradients along the surface (Marangoni 1871; Sternling
& Scriven 1959; Scriven 1960; Scriven & Sternling 1964). As the drop oscillates, the
surfactant will diffuse between the bulk and the sublayer, and will adsorb and desorb
between the sublayer and the surface. The surface tension gradients are governed by
the bulk diffusion rate and the sorption rate. On the other hand, gradients exert a
tangential force on the surface, and change the local value of the capillary pressure.
To describe the Marangoni effect, the bulk diffusion coefficient and the sorption rates
need to be known.

The second way oscillations are affected is due to the surface viscous stress caused
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by the accumulation of surfactants at the surface. As the drop oscillates, there are
surface shear flows and surface dilatational flows due to the local area expansion.
The surfactants on the surface create a shear stress to resist the shear flow, and a
surface normal stress to resist the surface dilatational flow. Related to the two surface
stresses, there exist two surface viscosities: the surface shear viscosity and the surface
dilatational viscosity (Scriven 1960; Scriven & Sternling 1964; Boussinesq 1913). They
will contribute to the dissipation of energy, thereby increasing the damping rate of
the drop oscillation over that caused by the shear viscosity of the bulk phase.

To simulate the oscillations of a drop with surfactants, we need to consider, in
addition to the shear viscosity of the bulk phase, the Marangoni effect and the two
surface viscosities. With so many unknown parameters, the theoretical analysis of the
drop oscillation becomes complex. In the case presented here, special conditions make
the theoretical analysis and numerical simulation tractable. First, the concentration
of the surfactant in the bulk phase is sufficiently low that the bulk properties of the
fluid, such as density and shear viscosity of the bulk phase, do not change. The fluid is
assumed to be Newtonian. Second, the surface fluid is assumed to be of the Boussinesq
type, so that the surface viscous stresses are linear functions of the rate of the surface
strains with two proportionality constants: surface dilatational viscosity and surface
shear viscosity. Third, surfactant diffusion from the bulk to the sublayer and sorption
between the sublayer and the surface are fast enough so that the surface surfactant
concentration as well as surface tension remain sensibly constant and homogenous
when the drop oscillates. Therefore, we can ignore the ‘Marangoni effect’ caused
by surface tension gradients for this particular case, although it is incorporated in
the modelling for future consideration of other cases in which gradient effects are
significant.

Lamb (1932, §349) shows that the small shear viscosity of the bulk phase produces
a thin weak vortical layer at the free surface resulting in viscous damping of deep
water waves. Lamb (1932) and Batchelor (1967) point out that dissipation is mainly
in the irrotational part of the flow, not in the vortical layer. With the assumptions
of a very thin vortical layer and low shear viscosity of the bulk phase, Lundgren
& Mansour (1988) and Shi & Apfel (1995) have employed the boundary-integral
method to study the nonlinear oscillations of large, axially symmetric liquid drops for
the case of zero gravity and small shear viscosity of the bulk phase.

In this paper, we deal with a special case: oscillations of a drop with the surfactant
Triton X-100, which is a polyethoxyether and is soluble in water. Its structure is
C8H17 − (C6H4) − (OCH2CH2)n − OH, with n either 9 or 10. The assumption of
constant surface tension for this particular case (Stebe 1989; Lin, McKeigue &
Maldarelli 1990) is justified as follows.

It is well known that the transport of soluble surfactant is diffusion controlled. In
the present case the concentration of Triton is 1.4× 10−4 g cm−3 (1 CMC). Therefore,
micelles are present in the solution. Van Hunsel, Bleys & Joos (1986) have studied the
demicellization rate for Triton X-100 and have shown that it is larger than 102 s−1.
By fitting the contours of the experimental images, the maximum area dilatation rate
of the surface of the drop, 1/A(dA/dt), is found to be less than 4.0 s−1. Here A is the
surface area. The surface area dilatation rate is much less than the demicellization
rate. As described by Lin et al. (1990), micelles provide a reservoir for Triton to
maintain a uniform sublayer concentration near the interface. Therefore, we can
ignore the surfactant diffusion from the bulk to the sublayer of the surface as the
drop oscillates. We only need to consider the kinetics between the sublayer and the
surface.
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When the surface Triton concentration reaches the value Γc, which corresponds
to 1 CMC bulk Triton concentration, the surface tension is saturated and remains
at approximately 33 dyne cm−1 (Stebe 1989; Lin et al. 1990; Apfel et al. 1997).
Here Γ is the surface Triton concentration. As the drop surface area decreases, the
corresponding surface surfactant concentration increases. If it is larger than Γc, the
surface tension remains constant. Therefore, we need not consider the desorption rate
in our case. We only need to consider the adsorption rate when the surface Triton
concentration is lower than Γc.

While the surface area dilates, the surface Triton concentration decreases. If the
adsorption rate is faster than the area dilatation rate as the drop oscillates, we can
assume that the surface tension remains a constant throughout the drop oscillation.
We evaluate the adsorption rate by calculating the time, t0, in which the fresh surface
reaches the 90% of the saturated surface Triton concentration Γc as the bulk Triton
concentration remains 1 CMC. We use the Langmuir model:

dΓ

dt
= βCs(Γ∞ − Γ )− αΓ . (1)

Here β and α are the factors for adsorption and desorption respectively, Γ∞ is the
saturated surface surfactant concentration, and Cs is the surfactant concentration in
the sublayer. The adsorption rate is proportional to the concentration of surfactant Cs
and the fraction of surface area unoccupied, while the desorption rate is proportional
to the fraction of the area covered by adsorbed surfactant. Solving the above equation,
we can derive the following result:

Γ =
βCsΓ∞

βCs + α
(1− e−(βCs+α)t). (2)

According to Stebe (1989) and Lin et al. (1990), β is larger than 108 cm3 mol−1 s−1, α is
of the order 10−2 s−1, and Cs approximates the bulk concentration, 3×10−7 mol cm−3.
Substituting these values into equation (2), we get t0 = 0.077 s. In our case one cycle
of oscillation T is about 0.83 s. Comparing t0 to T , we can see that Triton adsorption
is fast enough to maintain the surface surfactant saturation throughout the drop
oscillation.

According to the above analysis, in considering the dynamics of a drop with Triton,
only two variables are added to the surface stress: surface dilatational viscosity and
surface shear viscosity. With small shear viscosity of the bulk phase (large Reynolds
number) and small surface viscosities, we still can assume that the dissipation is
mainly in the irrotational part of the flow both in the bulk and at the surface. This
allows us to take advantage of the boundary-element method to simulate numerically
this drop oscillation. The ultimate test of the approach is its ability to predict the
observed behaviour.

2. Theory
Consider a water drop with surfactant statically positioned in air at negligible

gravity. Because of an acoustic radiation force on it, the drop is deformed. When
the acoustic force is suddenly decreased, free oscillations commence. The oscillation
decays over time, which is numerically simulated based on the following formalism.

Consider an incompressible liquid with a free surface which separates it from air.
The fluid in the drop satisfies the mass conservation equation and the Navier–Stokes
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Figure 1. The coordinate systems for an axially symmetric drop

equations,

∇ · V ∗ = 0, (3)

∂V ∗

∂t∗
+ V ∗ · ∇V ∗ = −1

ρ
∇P ∗ +

µ

ρ
∇2V ∗. (4)

Because the concentration of the surfactant in the liquid is sufficiently low, the bulk
properties of the drop are assumed to be the same as those of water. Here, ρ is the
water density, µ is the shear viscosity of the bulk phase of water, P ∗ is the pressure
in the drop, V ∗ is the oscillation velocity vector, and * means the dimensional value.
The coordinate system for this problem is shown in figure 1.

At the surface, there is a thin layer of surfactant. It must satisfy the surface
momentum equation (Edwards, Brenner & Wasan 1991),

ρs
dsV

s∗

dt∗
− ∇s · Ps∗ − F s∗ = n̂ · ‖ P∗ ‖ . (5)

Here Ps∗ is the second-order surface-excess pressure tensor, F s∗ is the surface-excess
force density vector, n̂ · ‖ P∗ ‖ is the difference between the force density vectors
inside and outside the drop, n̂ is the unit normal direction vector at the drop surface,
V s∗ is the mass-averaged velocity vector of the surface, ρs is the surface-excess mass
density and ∇s is the surface gradient:

∇s = Is · ∇. (6)

Is = (I − n̂n̂), (7)

dsV
s∗

dt∗
=
∂V s∗

∂t∗
+ V s∗ · ∇V s∗. (8)

Owing to the extreme thinness of the surface transition zone, in all practical
circumstances,

ρs = 0, (9)

whence equation(5) reduces to the following boundary condition form:

−n̂ · ‖ P∗ ‖= ∇s · Ps∗ + F s∗. (10)

Boundary conditions

For axially symmetric flow, the velocity V ∗ lies in a meridian plane. Therefore, the
boundary conditions at the free surface can be expressed as follows. The total stress
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acting on the surface consists of three parts (Lu & Apfel 1991): pressure stress, bulk
viscous stress and surface tension and viscous stress.

The pressure stress is

−n̂ · ‖ P∗ ‖p= n̂P ∗, (11)

where P ∗ is the pressure in the drop.
The bulk viscous stress is

−n̂ · ‖ P∗ ‖bv= −n̂ · 2µD∗ · n̂n̂+ n̂ · 2µD∗ · t̂t̂, (12)

where t̂ is the unit tangential vector at the surface as figure 1, and D∗ is the second-
order strain tensor:

D∗ = 1
2
(∇V ∗ + ∇V ∗T ). (13)

Also, the surface tension and viscous stress (Edwards et al. 1991) are

∇s · Ps∗ = −n̂(2Hσ∗)− n̂[2µs(b − 2HIs) : ∇sV s∗ + 2H(ks + µs)∇s · V s∗]

+(ks + µs)∇s∇s · V s∗ + µs{n̂× ∇s[(∇s × V s∗) · n̂]
−2(b − 2HIs) · (∇sV s∗) · n̂}, (14)

where σ∗ is the surface tension coefficient, 2H is the mean surface curvature,

2H = −∇s · n̂, (15)

µs is the surface shear viscosity and ks is the surface dilatational viscosity owing to
the presence of surfactants. In equation (14), b is a second-order tensor:

b = −∇sn̂. (16)

Substituting equations (11), (12) and (14) into equation(10), we get the boundary
conditions:

shear stress boundary condition

−n̂ · 2µD∗ · t̂t̂ + (ks + µs)∇s∇s · V s∗ + µs{n̂× ∇s[(∇s × V s∗) · n̂]
−2(b − 2HIs) · (∇sV s∗ · n̂)} = 0; (17)

normal stress boundary condition:

P ∗ + 2Hσ∗ = n̂ · 2µD∗ · n̂− 2µs(b − 2HIs) : ∇sV s∗ − 2H(ks + µs)∇s · V s∗. (18)

3. Non-dimensionalization
The equations are put in dimensionless form by using parameters length a0, velocity

v0 and time a0/v0. The length a0 is taken as the radius of the spherical drop with
equivalent volume as the non-spherical drop. P ∗ is replaced by the dimensionless term
P ∗/(2σ/a0). Assuming 2σ = ρa0v0

2, we have

v0 = [2σ/(ρa0)]
1/2. (19)

Based on this v0, the capillary wave velocity along the drop surface, a Reynolds
number Re is calculated.

Thus, equations (3), (4), (17) and equation (18) are non-dimensionalized as follows:
governing equations

∇ · V = 0, (20)

∂V

∂t
+ V · ∇V = −∇P + Re−1∇2V ; (21)
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boundary conditions

−n̂ · 2Re−1D · t̂t̂ + (K−1
e + U−1

e )∇s∇s · V s +U−1
e {n̂× ∇s[(∇s × V s) · n̂]

−2(b − 2HIs) · (∇sV s · n̂)} = 0, (22)

P +H = n̂ · 2Re−1D · n̂− 2U−1
e (b − 2HIs) : ∇sV s − 2H(K−1

e +U−1
e )∇s · V s. (23)

Here Re ≡ ρv0a0/µ, Ke ≡ ρv0a
2
0/k

s, and Ue ≡ ρv0a
2
0/µ

s, where Ke and Ue are the
surface viscosity constants.

4. Solution procedures
Lundgren & Mansour (1988) point out ‘For the viscous drop, the irrotational shear

stress is not zero at the free surface. This small irrotational shear stress drags a thin
viscous layer of rotational fluid along, making the small modification to the velocity
field that is required in order to satisfy the zero-shear-stress boundary condition.
This vortical layer is thin. The flow remains irrotational throughout the bulk of the
fluid’. With this assumption and the fact that a liquid drop is axially symmetric, the
problem is reduced to one dimension, and the calculation only requires information
on the intersection of a meridian plane with the drop as in figure 1. Based on
these theoretical considerations, Lundgren & Mansour (1988) study large Reynolds
number drop oscillations with the boundary-integral method. In the present work,
we incorporated surface viscous properties into the analysis. Because of the low
concentration of the surfactant in the drop, we assume that the fluid properties of
the bulk phase do not change. By fitting the contours of the experimental images, we
determine a damping coefficient of approximately 0.07 s−1 in the oscillations of this
Triton-bearing water drop with equivalent spherical diameter 2.41 cm. In the space
shuttle, we also performed experiments on the oscillation of a pure water drop. With
the same fitting analysis, we derived the damping coefficient of the oscillations of the
pure water drop with equivalent spherical diameter 2.5 cm to be around 0.06 s−1.
This experimental comparison confirms the assumption that the surface viscosities
of Triton are small; the Reynolds number Re and the surface viscosity constant
Ke are of the same order, and the rotational velocity Ut ∝ O(δ), here δ = Re−1/2.
As in Lundgren’s model (Lundgren & Mansour 1988), Ut is ignored in this paper.
All of these assumptions afford us the opportunity to use Lundgren’s method. With
second-order O(δ2) approximation and after performing the azimuthal integration,
we get the following equations:

un = u · n̂ = r−1 ∂rAθ

∂s
, (24)

ut = u · t̂ =
∂φ

∂s
, (25)

φ = µ(r) +

∫
s

[µ(r′)− µ(r)]Kφ(r, r′)ds′, (26)

Kφ = − r′

πL

{
n̂′ · e′r

2r′
[E(m)−K(m)] +

n̂′ · (r − r′)
h2

E(m)

}
, (27)

Aθ = −
∫
s

[µ(r′)− µ(r)]KA(r, r′)ds′, (28)
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KA =
r′

πL

{
t̂
′ · e′r
2r′

[E(m)−K(m)] +
t̂
′ · (r − r′)

h2

[
h2

2rr′
(K(m)− E(m))− E(m)

]}
, (29)

dr

dt
= u+Unen, (30)

Un =
1

r

∂rB2

∂s
, (31)

dB2

dt
= −(2t̂ · ∇u · t̂ + u · r̂/r)B2 + 2R−1

e n̂ · ∇u · t̂ − {(K−1
e +U−1

e )∇s∇s · us

+U−1
e {n̂× ∇s[(∇s × us) · n̂]− 2(b − 2HIs) · (∇sus · n̂)}} · t̂, (32)

dφ

dt
=
u · u

2
+UnUn + 2B2t̂ · ∇u · n̂+ 2Re−1(t̂ · ∇u · t̂ + u · r̂/r) +H

+2U−1
e (b − 2HIs) : ∇sus + 2H(K−1

e +U−1
e )∇s · V s, (33)

L2 = (z − z′)2 + (r + r′)2, h2 = (z − z′)2 + (r − r′)2, m2 = 1− h2

L2
=

4rr′

L2
, (34)

where u is the irrotational part of the velocity, and U is the rotational part of
the velocity, so that V = u + U . Here Un and un are the normal rotational and
irrotational velocities respectively; ut is the irrotational tangential velocity; φ is
the irrotational velocity potential, and u = ∇φ. B2 is the rotational vector velocity
potential, U = ∇ × B2eθ; er , eθ and ez form the cylindrical coordinates; r, z are the
coordinates at the surface as in figure 1. Here s is the arclength from the top of the
drop, and µ(r) is the dipole density. E(m) and K(m) are the first and second elliptic
integrals which were computed using the accurate approximation formulae given in
Abramowitz & Stegun (1972).

Given initial conditions, we can use equations (24)–(34) to simulate numerically
the drop oscillation. The procedure for using the program is as follows: Before the
drop is released, the deformed drop is statically positioned in the air for a period of
time so that Triton reaches an equilibrium state. The initial scalar velocity potential
φ, the vector rotational velocity potential B2, and the initial positions r and z on
the surface are known. With the end-point corrected trapezoidal quadrature method
(Alpert 1990), from (26) the dipole density µ(r) is calculated. Substituting µ(r) into
(28), the vector irrotational velocity potential Aθ is derived. Then, with φ, Aθ , B2, by
(24), (25), and (31), irrotational velocities un and ut, and rotational velocity Un are
calculated respectively. Finally, by (30), (32) and (33), the next time-step position r, z,
vector velocity potential B2 and velocity potential φ are derived with the fourth-order
Runge–Kutta method.

Repeating this procedure, we can simulate the drop oscillation. Because the drop
is always symmetric about the z-axis as in figure 1, only half of the contour of
the drop is simulated. In the program, 65 points from the top to the bottom along
the grid line are used. To make the grids evenly spaced along the contour line, the
grids are remeshed after every time iteration. In addition, the surface shape and
the rotational and irrotational velocity potential are smoothed with the five-point
numerical smoothing method (Longuet-Higgins & Cokelet 1976) in order to prevent
high-frequency surface oscillations. In the calculation, the non-dimensional time step
is 6.25 × 10−4. Throughout the simulation, the volume of the drop changes by less
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(a) t = 3.30 (b) t = 5.35 (c) t = 0.75

(d ) t = 10.05 (e) t = 9.80 ( f ) t = 0.75

(g) t = 9.60 (h) t = 9.65 (i ) t = 9.70
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Figure 2. Different cases when calculation stops. (a) Re = ∞, ks = 0 sP, µs = 0 sP. (b) Re = 892,
ks = 0 sP, µs = 0 sP. (c) Re = 892, ks = 0.050 sP, µs = 0.001 sP. (d) Re = 892, ks = 0.015 sP,
µs = 0.0005 sP. (e) Re = 892, ks = 0.015 sP, µs = 0.010 sP. ( f ) Re = 892, ks = 0.015 sP, µs = 0.015 sP.
A desired case: (g–i) Re = 892, ks = 0.020 sP, µs = 0.010 sP.

than 1% from its initial value. It is about 0.24% of its initial non-dimensional volume
4.188.

5. Analysis of results
With an excellent data set from space shuttle experiments (STS 73, Oct.-Nov.,

1995) as a basis of comparison, we simulated the oscillations of a water drop with
the surfactant Triton X-100. The initial deformed-drop parameters are as follows.

volume: 7.33 cm3, equivalent spheric diameter: 2.41 cm
aspect ratio: 3.425
Triton concentration: 1.4× 10−4 g ml−1 (1CMC)
the drop positions, r and z: from the image of the drop
surface tension σ (Apfel et al. 1997; Stebe 1989; Lin et al. 1990): 33 dyne cm−1

drop density ρ: 1.0 g cm−3

shear viscosity of the bulk phase µ : 0.01 cm2 s−1

from equation (19), we get a Reynolds number Re: 892
initial velocity potential φ and vector velocity potential B2: 0.
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In an earlier assessment of the first cycle of oscillation, Apfel et al. (1997) assumed
zero surface viscosities and compensated for the additional damping by assuming a
decreased Reynolds number. The best fit for surface tension in this circumstance was
33.0 dyne cm−1, which is close to the values at the critical micelle concentration as
measured by Stebe (1989) and by Lin et al. (1990). This initial estimate is shown in
the present work to fit the data well over nine cycles of oscillations.

In equations (32) and (33), there are two unknown variables: surface dilatational
viscosity ks and surface shear viscosity µs. Our goal is to find the approximate ks

and µs so that simulations match experimentally observed oscillations. To do so,
we calculate the case with both of them zero and take this result as a reference.
With the knowledge that surface shear viscosity is smaller than surface dilatational
viscosity (Edwards et al. 1991; Tian 1994), we keep µs small, 1.0 × 10−4 sP (surface
poise), and increase the dilatational surface viscosity from 1.0 × 10−4 sP to 0.5 sP.
Comparing the numerically simulated drop shapes with the experimental results, we
analyse the damping constant and adjust ks. Then in the same way, we choose µs.
Finally, we find an optimal pair of ks and µs. The result of the procedure yields
surface dilatational and shear viscosities of 0.020 sP and 0.010 sP, respectively. Not
only do these parameters rationalize the damping behaviours, but the detailed shapes
of the greatly deformed drop match well with the observations.

To illustrate the sensitivity of the results to the choice of parameters, we provide
the following examples:

1. Assume there is zero viscosity, with µ = ks = µs = 0, in the oscillation of a drop.
The simulation result in figure 2(a) shows that at time t = 3.30, the middle points of
the left and right sides of the drop touch. The calculation is, therefore, terminated.

2. Consider only the shear viscosity of the bulk phase, with both of the surface
viscosities zero. The simulation result in figure 2(b) shows that at time t = 5.35, almost
at the end of the first cycle, the middle points of the top and bottom of the drop
touch because of the small damping. The calculation stops.

3. In figure 2(c), Re = 892, ks = 0.050 sP, µs = 0.001 sP, with high surface
dilatational viscosity, the drop deforms in a way that is completely different from the
experimental observations in figure 3.

4. We consider both the surface viscosities and the shear viscosity of the bulk. In
figure 2(d), 2(e) and 2( f ), ks is the same, 0.015 sP, with different µs, 0.005 sP, 0.010 sP
and 0.015 sP respectively. Because the edges of the projected lobes at the top and
bottom will touch, the calculation stops. Comparing these three cases, we find that the
lobes in (d) and ( f ) are large and contract at the edges of the lobes. The lobes in ( f )
are thinner than those in (d). In (e), we see that the lobes are small and that the left
and right sides of the lobes are almost parallel. If we adjust the surface viscosities so
that the two sides of the lobes stretch towards the outside, then this case corresponds
more closely to the situation of the real drop oscillation.

5. Compared with the experiment in figure 3, the shapes in figure 2(g–i) with
the same Reynolds number, and same surface dilatational and shear viscosities, at
non-dimensional time 9.60, 9.65, 9.70, respectively, are as desired. The two sides of
the lobes at the centres of the top and bottom of the drop stretch toward the outside.

In the above five cases, we adjust the surface dilatational and shear viscosities
by considering the drop shape at the time when the calculation terminates. In the
calculation we also adjust them by comparing the oscillation shapes at other times
with the corresponding experimental images in figure 3.

Shown in figure 3(a–d) are the first nine cycles of the drop oscillations with both
experimental observations and numerical simulations. The analysis procedure for the
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(a)

t = 0 (s)

z

τ = 0 0.20 0.45 0.55 0.60 0.75 0.90

τ = 1.20 1.35 1.70 2.05 3.05 3.65 4.00
0.03 0.07 0.08 0.10 0.12 0.15

t = 0.19 (s)
τ = 4.25 4.65 4.85 4.95 5.20 5.40 5.70

0.21 0.29 0.33 0.46 0.55 0.60

t = 0.63 (s)
τ = 5.95 6.15 6.25 6.35 6.65 7.40 7.75

0.70 0.73 0.75 0.79 0.83 0.87

t = 0.92 (s) 0.94 0.98 0.99 1.02 1.16 1.19

r

Figure 3(a). For caption see page 217.
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(b)

t = 1.26 (s)

τ = 8.20 8.65 9.15 9.60 9.70 10.00 10.20

τ = 10.45 10.55 10.75 11.00 11.15 11.50 12.05
1.33 1.39 1.46 1.48 1.54 1.57

t = 1.59 (s)

τ = 12.30 12.45 13.05 13.20 13.65 13.80 14.15

1.62 1.65 1.69 1.72 1.75 1.84

t = 1.94 (s)

τ = 14.35 14.65 14.90 15.10 15.55 15.90 16.25

2.00 2.05 2.07 2.10 2.15 2.21

t = 2.25 (s) 2.30 2.36 2.40 2.45 2.51 2.54

Figure 3(b). For caption see page 217.
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(c)

t = 2.62 (s)

τ = 16.45 16.95 17.15 17.45 17.65 18.05 18.45

τ = 18.90 19.00 19.40 20.00 20.25 20.70 20.85

2.67 2.71 2.76 2.80 2.84 2.93

t = 3.00 (s)
τ = 21.00 21.40 21.80 22.00 22.35 22.65 22.75

3.04 3.06 3.19 3.25 3.31 3.35

t = 3.37 (s)
τ = 23.10 23.70 24.30 24.45 24.80 25.00 25.40

3.43 3.45 3.55 3.59 3.61 3.66

t = 3.73 (s) 3.82 3.85 3.94 4.01 4.04 4.06

Figure 3(c). For caption see facing page.
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(d )

t = 4.18 (s)

τ = 25.85 26.05 26.35 27.15 27.35 27.45 28.30

τ = 28.65 29.00 29.25 29.50 29.75 30.20 30.80
4.22 4.27 4.36 4.44 4.53 4.56

t = 4.64 (s)

τ = 31.50 31.65 31.85 32.40 32.75 33.20 33.60

4.68 4.77 4.81 4.83 4.90 4.96

t = 5.08 (s)
τ = 33.70 34.60 35.40 35.50 35.60 36.15 36.50

5.11 5.16 5.22 5.27 5.36 5.43

t = 5.45 (s) 5.53 5.64 5.72 5.76 5.80 5.86

Figure 3(d). Experimental observations of nine complete cycles of superoscillation of a water drop
(7.33 cm3) with the surfactant Triton X-100 at the critical micelle concentration. The time in seconds
is shown. Also shown (above) is the numerical simulation using the boundary-integral method. The
time shown with the simulation is non-dimensional. (a) The first and part of the second cycles of
oscillation; (b) the second to part of the fourth cycle of oscillation; (c) the fourth to the sixth cycle
of oscillation; (d) the seventh to the ninth cycle of oscillation.
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Cycle n t(s) exp. tn/t1 t sim. tn/t1

1 0.85 1.0 5.35 1.0
2 0.72 1.1806 4.65 1.1505
3 0.70 1.2143 4.10 1.3049
4 0.66 1.2879 3.90 1.3718
5 0.63 1.3492 3.85 1.3896
6 0.62 1.3710 3.80 1.407
7 0.61 1.3934 3.75 1.4267
8 0.60 1.4167 3.70 1.4459
9 0.59 1.4407 3.70 1.4459
10 0.59 1.4407 3.70 1.4459

Table 1. Comparison of the time cycles of experiment and simulation.

drop oscillations in every cycle is almost the same. We use the cylindrical coordinate
system in figure 1 to describe the first cycle of oscillation. A few points of comparison
are noteworthy:

At the beginning, the left and right ends move toward the z-axis. The top and
bottom move away from r-axis slowly. We can see the indentation at the top and
bottom of the drop at numerical time 0.45. In the corresponding experimental image,
we find that the outlines of the image at top and bottom are dim because the drop is
concave in this region.

As we approach non-dimensional time 3.05, the oscillations show that the top and
bottom of the drop stretch out, and the left and right ends move toward the z-axis.

Between the time 3.05 and 5.20, the left and right ends move away from the z-axis,
the top and bottom move toward the r-axis. Because of inertia, at time 5.20 the top
and bottom of the drop are indented again, and we can observe that those parts of
the image are correspondingly dim.

If we compare the same shapes of the drop in different cycles, we can see that the
width along the r-axis becomes wider and the length along the z-axis becomes shorter
due to damping. The deformation also becomes smaller and the shape tends toward
a sphere as the drop oscillates.

Comparing the shapes of the experimental images and the results of the numerical
simulation over nine cycles, we observe that they match remarkably well. The ratio
of the real experimental dimensional time below the images to the non-dimensional
time above the simulated pictures in figure 3 is approximately 0.16 s. The numerical
ratio of the time a0/v0 is 0.163 s. They also fit well. In addition, comparing the ratio
of the time cycles of the experiment with that of the simulation, as in table 1, there
is excellent correspondence.

With the simulation method, the surface shear viscosity and surface dilatational
viscosity of the water drop with 1CMC Triton are found as 0.010 sP and 0.020 sP
respectively. For a surfactant soluble in water, it is difficult to measure its surface
dilatational viscosity experimentally, because the unknown diffusion rate from the
bulk to the sublayer and the unknown sorption rate between the sublayer and the
surface need to be considered. So far, we have not found any published experimental
results for the two surface viscosities of Triton. We cannot judge the accuracy of
the two surface viscosities derived through the simulation. However, it is well known
that the surface shear viscosities of the water-soluble surfactants are in the range
10−3 sP to 10−1 sP. Our result is within this range. Furthermore, the surface viscosity
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constants Ke and Ue are of the same order as the Reynolds number Re, in agreement
with the experimental observations and the fitting analysis as described in §4.

6. Conclusion
Comparing numerical results with experimental results, we achieve good agreement

when a unique pair of surface viscosity coefficients are chosen. The assumption that
the surface tension remains constant and homogenous at the surface is useful for
this special case. For a Reynolds number of 892, surface dilatational viscosity of
0.020 sP, and surface shear viscosity of 0.010 sP, we are able to take advantage of
the boundary integral method to simulate this large deformation (beginning aspect
ratio 3.425) and large-amplitude drop oscillation. In addition, we note that both
surface dilatational viscosity and surface shear viscosity play a major role in the drop
oscillation. We have provided a theoretical procedure that permits us to extract these
properties by comparing experimental observations with numerical simulations of the
drop oscillation.

The authors are indebted to Professor B. T. Chu for his instruction and guidance.
We also thank the reviewers and editor for their helpful suggestions. This work is
supported by NASA through JPL, contract 958722.
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